Total Pageviews

Thursday, 19 February 2026

#India AI Imapct Summit 2026 भारताच्या नेतृत्त्वाची आता जग दखल घेणार |

https://youtu.be/yCtEakxbeQE?si=3026sMnioL-0ctmH 

भारतीय AI संरचना

स्वयंपूर्णता, सक्षमता आणि कार्यक्षमतेचा मार्ग

 

. प्रस्तावना: अब्जावधींचा अडथळा

सध्या जगभरात 'आर्टिफिशियल इंटेलिजन्स' (AI) च्या क्षेत्रात मोठी स्पर्धा सुरू आहे. ही प्रगती मोजण्यासाठी प्रचंड वीज आणि अफाट डेटाचा वापर केला जात आहे. यामुळे एक असा अडथळा (Moat) तयार झाला आहे, जिथे फक्त श्रीमंत देश किंवा कंपन्याच टिकू शकतात. भारतासाठी हे धोक्याचे आहे, कारण जर आपण परदेशी तंत्रज्ञानावर अवलंबून राहिलो, तर आपण कायम त्यांच्यावर विसंबून राहू. हा अहवाल भारतासाठी एक 'तिसरा मार्ग' सुचवतोपरदेशी तंत्रज्ञान वापरण्यापेक्षा स्वतःचे 'स्वदेशी AI' तयार करणे.


. बुद्धिमत्तेचे केंद्रीकरण

संगणकीय शक्ती आणि डेटाचे अडथळे: AI तयार करण्यासाठी दोन मोठे अडथळे आहेत:

  • हार्डवेअरचा अडथळा: शक्तिशाली AI मॉडेल बनवण्यासाठी हजारो 'GPUs' (प्रगत चिप्स) लागतात. भारताला या चिप्स मिळवण्यात अडचणी येत आहेत, ज्यामुळे हे काम महाग आणि कठीण झाले आहे.
  • डेटाचा अडथळा: इंटरनेटवरील माहिती आता खासगी होत आहे. ज्यांच्याकडे स्वतःचा डेटा आहे, तेच आता शक्तिशाली आहेत.

भारतीय भाषांची कमतरता: सध्याचे AI मॉडेल्स पाश्चात्य विचारांवर आधारित आहेत. भारताची प्रमुख भाषा असलेल्या हिंदीचा वाटा जागतिक डेटासेटमध्ये % पेक्षाही कमी आहे. जोपर्यंत आपण आपल्या भाषांमध्ये AI बनवत नाही, तोपर्यंत त्याचा फायदा सामान्य भारतीयांना होणार नाही.


. 'इंडिया AI' मिशन: स्वयंपूर्णतेकडे पाऊल

२०२६ च्या सुरुवातीला भारत सरकारने यासाठी १०,३७१ कोटी रुपयांची तरतूद केली आहे. फेब्रुवारी २०२६ पर्यंतची प्रगती:

  • संगणकीय शक्ती: ३८,००० GPUs उपलब्ध करून देण्यात आले आहेत आणि स्टार्टअप्सना ते सवलतीच्या दरात (₹६५ प्रति तास) दिले जात आहेत.
  • स्वदेशी मॉडेल्स: 'सर्वम AI' आणि 'ग्यान AI' सारख्या १२ संस्थांची निवड स्वतःचे मॉडेल्स बनवण्यासाठी केली आहे.
  • भारत-जेन (BharatGen): IIT बॉम्बेच्या नेतृत्वाखाली भारतीय संस्कृती आणि भाषा समजणारे AI विकसित केले जात आहे.

. मोठा वाद: नवीन मॉडेल की सुधारित मॉडेल?

येथे दोन विचारप्रवाह आहेत: . स्वतःचे मॉडेल बनवणे: काहींच्या मते, परकीय देशांवर अवलंबून राहू नये म्हणून शून्यापासून स्वतःचे मॉडेल बनवणे गरजेचे आहे. . सुधारित मॉडेल (Fine-Tuning): डॉ. विद्यासागर यांच्यासारख्या तज्ञांच्या मते, शून्यापासून मॉडेल बनवण्यापेक्षा जगात उपलब्ध असलेल्या 'ओपन सोर्स' मॉडेल्सना भारतीय गरजांनुसार सुधारणे (Fine-tune) जास्त सोपे आणि स्वस्त आहे.

"तुम्हाला भारताला केवळ श्रीमंत देशांच्या रांगेत बसवायचे आहे की गरीब मुलांना शिकवायचे आहे? जर तुमचे उद्दिष्ट चुकले, तर उत्तरही चुकेल."डॉ. विद्यासागर


. धोरणात्मक शिफारसी

अब्जावधी रुपये खर्च करता AI क्षेत्रात टिकण्यासाठी भारताने खालील गोष्टी कराव्यात:

  • लहान मॉडेल्सवर भर द्या (SLMs): खूप मोठे मॉडेल बनवण्यापेक्षा शेती, आरोग्य आणि शिक्षण यांसारख्या क्षेत्रांसाठी लागणारे नेमके आणि लहान मॉडेल्स बनवा.
  • लोकसहभागातून सुधारणा: उपलब्ध मॉडेल्सना लोकांच्या अभिप्रायातून अधिक हुशार बनवा.
  • सरकारी पायाभूत सुविधांचा वापर: AI ला 'आधार', 'UPI' आणि 'भाषिणी' सारख्या सरकारी यंत्रणांशी जोडा.
  • विविध गुंतवणूक: फक्त एकाच तंत्रज्ञानावर अवलंबून राहता विविध पर्यायांचा विचार करा.

. निष्कर्ष: ग्राहकाकडून निर्मात्याकडे

भारत सध्या AI वापरणारा जगातील तिसरा मोठा देश आहे. पण पुढचे २४ महिने ठरवतील की आपण 'निर्माते' बनणार की नाही. खरी स्वयंपूर्णता मोठे सुपर कॉम्प्युटर असण्यात नाही, तर आपल्या लोकांच्या समस्या सोडवण्यात आहे. भारताने 'फक्त नावासाठी' प्रकल्प करण्यापेक्षा 'लोकांच्या कामाचे' प्रकल्प केल्यास आपण जगाचे नेतृत्व करू शकतो.


THE INDIAN AI ARCHITECTURE

Sovereignty, Scalability, and the Path to Efficiency


1. Introduction: The Moat of Billions

The global AI race is currently defined by a "scaling paradigm" where progress is measured in megawatts and trillions of parameters. This trajectory has created a "Moat of Billions," concentrating intelligence in the hands of a few entities with the capital to fund massive compute clusters. For India, this centralisation is a strategic risk. If competitive AI requires American-level spending and Western-centric data, India risks a new form of technological dependency.

This brief outlines a "third way"—a strategy that balances national sovereignty with technical pragmatism, moving from a model of "AI Consumption" to "Sovereign Creation."


2. The Centralisation of Intelligence

Compute & Data Barriers

The scaling era has solidified two primary barriers to entry:

  • The Hardware Moat: Training frontier models requires tens of thousands of cutting-edge GPUs. India currently faces Tier 3 chip export restrictions, making massive-scale training prohibitively expensive and logistically complex.
  • The Data Moat: As the "open" internet closes (via scraping restrictions on platforms like Reddit and Stack Overflow), proprietary, human-labelled data has become the new oil.

The Indic Language Deficit

Current global models reflect foreign cultural assumptions. Even Hindi, India's most spoken language, has less than 1% representation in the datasets of frontier models. Without domestic models, AI will remain a "black box" that struggles to serve 1.4 billion citizens in their primary languages.


3. The IndiaAI Mission: A Sovereign Push

In early 2026, the Indian government transitioned from policy to execution. The IndiaAI Mission (Phase 2.0) represents a ₹10,371 crore ($1.25 billion) commitment to independence.

Key Progress (as of February 2026):

  • Compute Power: 38,000 GPUs have been onboarded and made available to startups at a subsidised rate of ₹65/hour. An additional 20,000 GPUs are currently being procured.

+1

  • Indigenous Model Development: 12 organisations, including Sarvam AI, Soket AI, Gnani AI, and Gan AI, have been shortlisted to build foundational models.
  • The BharatGen Initiative: A sovereign multimodal ecosystem led by IIT Bombay to ensure AI reflects Indian cultural and linguistic nuances.

4. The Great Debate: Foundational Models vs. Fine-Tuning

A critical tension has emerged between Prestige and Purpose.

  • The Case for Foundational Models: Proponents argue that building from scratch is a strategic necessity to avoid reliance on foreign IP and to control the "decision-making logic" of the models.
  • The Case for Fine-Tuning: Critics, including Dr. Vidyasagar, argue that India should not "chase frontier models." They contend that fine-tuning powerful open-source models (like DeepSeek or Llama) provides 90% of the utility at 1% of the cost. Running a model requires two orders of magnitude less compute than training one.

+1

"Do you want to say India is in an elite group, or do you want to teach children? If you've got the objective wrong, the solution will be wrong."Dr. Vidyasagar


5. Strategic Recommendations

To build a sustainable AI ecosystem without burning billions, India should adopt a "Deployment-First" philosophy:

  1. Prioritise Small Language Models (SLMs): Rather than chasing trillion-parameter generalists, focus on sector-specific, task-optimised models for healthcare, agriculture, and education.
  2. Master "Post-Training": Invest heavily in Reinforcement Learning from Human Feedback (RLHF) and fine-tuning. This allows India to "manufacture intelligence" on top of existing open-source architectures.
  3. DPI Integration: Integrate AI with India’s Digital Public Infrastructure (Aadhaar, UPI, Bhashini). This creates a "Data Advantage" that foreign firms cannot replicate.
  4. Technoeconomic Hedging: Avoid betting on a single architecture. Diversify investments across hybrid neuro-symbolic systems and classic machine learning to solve real-world problems.

+1


6. Conclusion: From Market to Maker

India is already the world’s third-largest AI market by consumption. The next 24 months will determine if it becomes a top-tier maker. True sovereignty does not lie in owning the world's largest supercomputer, but in owning the most relevant solutions for its people. By pivoting from "prestige projects" to "practical deployment," India can lead the Global South in building AI that is both affordable and impactful.


Wednesday, 18 February 2026

India Leads in AI: For the Welfare and Happiness of All.


With the strength of 140 crore Indians, India is gearing up to lead in the 'AI' sector. At the same time, India firmly insists that this new technological power must serve broad public interest. Following the principle of 'do first, then tell', India demonstrated the immense power of 'AI' for public welfare and delivered a new message of inclusive development to the world through the 'India AI Impact Summit - 2026'.


New Era of AI Revolution

The world is now entering a new era of artificial intelligence (AI). After the industrial revolution and the information-technology revolution, the 'AI revolution' stands as humanity's biggest transformative force. Against this backdrop, India has resolved not just to participate but to lead as a guide.


At the 'India AI Impact Summit - 2026', Prime Minister Narendra Modi presented India's 'AI' future, rooted in the collective intelligence of 140 crore Indians, to the world. This summit was not limited to mere technological discussions; it brought together policymakers, experts, researchers, industry representatives, and startup innovators from across the globe. This gathering is a testament to the growing global trust in India.


Concept of Inclusive AI

The summit's theme was framed as 'Sarvajan Hitaya, Sarvajan Sukhaya' (for the welfare and happiness of all). 'AI' should not remain in the hands of a few wealthy elites but reach every level of society—this has been India's approach from the start. While the Western world discusses 'AI' mainly in terms of profit, markets, and competition, India added threads of social justice, inclusivity, and linguistic diversity, marking its uniqueness.


In the previous summit, the Prime Minister noted that 'AI'-generated images often show left-handed sketches. Using this example, he highlighted that technology reflects the biases in its training data—if data lacks diversity, 'AI' vision becomes one-sided. This revealed India's broad perspective on 'AI'.


Progress in Startups and Policies

India's performance in 'AI' has surged rapidly. Over 1,500 startups are active, with a combined valuation in billions of dollars. They are driving innovations in health, agriculture, education, finance, defense, and urban management.


At the government level, the 'India AI Mission' is central. With a provision of ₹10,372 crore, it utilizes computing power from over 38,000 GPUs. This represents India's indigenous AI infrastructure buildup.


Linguistic Diversity and Education

The 'Bhashini' initiative is particularly noteworthy. In multilingual India, for 'AI' benefits to reach the masses, technology must be inclusive in language too. 'Bhashini' facilitates translation, communication, and information access in various Indian languages, embodying 'Sarvajan Hitaya'. Efforts continue with 'Bharat Gen' and LLM development. Under the National Education Policy-2020, AI is integrated at the school level.


Sector-Specific AI Implementation

In agriculture, AI aids weather forecasting, crop management; in health, diagnosis and telemedicine; in finance, fraud detection; in urban management, traffic control. Digital initiatives like 'Digital India', 'Aadhaar', 'UPI' form the base for AI.


In 'Pariksha Pe Charcha', the Prime Minister advised students to use 'AI' positively for learning, not as a shortcut—preserve thinking power. Indian researchers' presence in global journals is increasing.


Soft Power and Global Leadership

The blend of yoga, Ayurveda, digital infrastructure, and democratic values sets India apart. The summit signaled India's potential to lead on ethical AI use.


Multi-Dimensional Benefits and Future

Increased investments, research collaborations, global policy participation. India's assertive role amplifies developing world's voice. 140 crore population is a vast data-talent power. The 'India AI Impact Summit - 2026' messaged that India will use technology for welfare with 'Sarvajan Hitaya, Sarvajan Sukhaya', powered by 140 crore Indians